Tidal salt marsh sediment in California, USA. Part 2: occurrence and anthropogenic input of trace metals.
نویسندگان
چکیده
Surface sediment samples (0-5 cm) from 5 tidal salt marshes along the coast in California, USA were analyzed to investigate the occurrence and anthropogenic input of trace metals. Among study areas, Stege Marsh located in the central San Francisco Bay was the most contaminated marsh. Concentrations of metals in Stege Marsh sediments were higher than San Francisco Bay ambient levels. Zinc (55.3-744 microg g(-1)) was the most abundant trace metal and was followed by lead (26.6-273 microg g(-1)). Aluminum normalized enrichment factors revealed that lead was the most anthropogenically impacted metal in all marshes. Enrichment factors of lead in Stege Marsh ranged from 8 to 49 (median=16). Sediments from reference marshes also had high enrichment factors (2-8) for lead, indicating that lead contamination is ubiquitous, possibly due to continuous input from atmospherically transported lead that was previously used as a gasoline additive. Copper, silver, and zinc in Stege Marsh were also enriched by anthropogenic input. Though nickel concentrations in Stege Marsh and reference marshes exceeded sediment quality guidelines, enrichment factors indicated nickel from anthropogenic input was negligible. Presence of nickel-rich source rock such as serpentinite in the San Francisco Bay watershed can explain high levels of nickel in this area. Coefficients of variation were significantly different between anthropogenically impacted and non-impacted metals and might be used as a less conservative indicator for anthropogenic input of metals when enrichment factors are not available.
منابع مشابه
Tidal creek and salt marsh sediments in South Carolina coastal estuaries: I. Distribution of trace metals.
Twenty-eight tidal creeks were sampled along the South Carolina coast in the summer of 1995 to determine the levels of sediment trace metal contamination associated with different types and varying levels of human development in their watersheds. The particle size and total organic carbon (TOC) content of creek sediments in developed watersheds (i.e., industrial, urban, and suburban) were simil...
متن کاملSediment fluxes and exchange between an urban salt marsh and Long Island Sound Troy
Salt marshes provide a broad range of valuable ecological services. In urban settings these services are magnified in importance, as marshes are typically smaller, serve more concentrated human populations, and face more dramatic anthropogenic pressures. Unfortunately, our knowledge of material exchange between marshes and coastal waters is limited, particularly in urban areas. Tidal flux studi...
متن کاملInvestigation on anthropogenic and natural share of heavy metals in surface sediments of Shadegan wetland
Accumulation of trace metals in sediment can cause severe ecological impacts. The present study determines the elemental concentrations and chemical partitioning of heavy metals in surface sediment of Shadegan wetland. Shadegan wetland is one of the most important wetlands in southwest of Iran and it is in Ramsar-listed wetlands. For this purpose, 7 sampling stations were selected for sediment ...
متن کاملCross site analysis and synthesis of the role of vegetation, sediment supply, sea level rise and storminess on intertidal coastal geomorphology
Main Goals The proposed research focused on development of a cross site applicable model to Plum Island Ecosystems (PIE), Virginia Coast Reserve(VCR) and the Georgia Coastal Ecosystems (GCE) LTER sites in which the morphological co-evolution of the tidal basin and salt marsh is determined by site specific environmental drivers including tides, wind waves, sediment supply and sea level rise (SLR...
متن کاملA numerical model for the coupled long-term evolution of salt marshes and tidal flats
[1] A one-dimensional numerical model for the coupled long-term evolution of salt marshes and tidal flats is presented. The model framework includes tidal currents, wind waves, sediment erosion, and deposition, as well as the effect of vegetation on sediment dynamics. The model is used to explore the evolution of the marsh boundary under different scenarios of sediment supply and sea level rise...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemosphere
دوره 64 11 شماره
صفحات -
تاریخ انتشار 2006